
日本研究資料庫與知識圖譜
The Knowledge Database/ Graph of "Japan-studies"
本研究可視化中國大陸學者的「日本研究論文資料庫」,其方法為蒐集「中國社科院」之學刊《日本學刊》之37年間2337篇論文,隨後,以其中「篇名、關鍵字、摘要」為基礎欄位(metadata)製成資料庫。 本研究並使用機器學習演算法(隱含狄利克雷分布, Latent Dirichlet Allocation, LDA)歸納《日本學刊》研究論文的「發表類型」、各類代表性關鍵字有哪些,與各年的「發表取向」有什麼變化。 本研究成功實做大量中文長文本的文字解析,並能抽取其中資料訊息,並將流程半自動化,可以達到輔助研究者快速大量理解訊息; 能抽取出高產作者、高產機構、歷年發表情形以及日本研究的主要七類範疇「金融經濟、政治、管理、文學思想、文化社會、國際關係、社會經濟」。 本研究期望能提供讀者對於某個知識領域的遠程宏觀視角,富含日本研究的方方面面「知識」,能作為學者從事日本研究之「知識庫」。 在本網站進一步提供讀者可視化訊息,將上述數據以社會網路分析(SNA)方法做出「年代-主題」、「作者-期數」、「主題-關鍵字」等等研究知識圖譜,提供學者同儕作為後續研究基礎。 如有合作需求或意見回饋,請聯繫hlshao2@gmail.com
Since studies on knowledge areas/ knowledge communities are often limited by our labor time, research cost/performance shall hence be prioritized/selected. However, our vision could be enhanced by new interdisciplinary thinking. In this article, we employed the methods of Machine Learning and Natural Language Processing to analyze 2,237 research articles. Those articles were taken from The Journal Japanese Studies published by Institute of Japanese Studies, Chinese Academy of Social Sciences (JSCASS) between 1991 and 2017. Results from the data analysis provided the answers to two questions, namely (1) what fields can be clustered in Japanese Studies, accompanied with their keywords, and (2) the number flows of the fields by year. This study analyzed thousands of Chinese long texts, and captured the key information semi-automatically, in order to efficiently support readers to approach complex information in a simplified manner. This study disclosed information on highly productive writers, highly productive institutes, their annual publications, and the main topics of Japanese Studies, which are Economics, Politics, Management Science, Literature/Ideology, Culture/Society, IR, and Social Economy. It could also provide a macro perspective in the “East Asian Studies” by new interdisciplinary thinking.
誌謝:本資料庫由科技部計畫「從知識系譜到知識地圖—大數據與機器學習下的中國研究」。“From Knowledge Genealogy to Knowledge Map-China Studies in Big Data and Machine Learning”
107-2410-H-003 -058 -MY3, Ministry of Science and Technol-ogy, the MOST, Taiwan.